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ON THE UNLOADING PROCESS FOR CONTACT INTERACTION™

V.,1. KUZ'MENKO

The unlozding process in & body under the action ¢f a stamp is investigated., It

is assumed that the unloading occurs at all points of the body. The contact area

between the body and the stamp car. change during the unloading; consequently,

the unloading problem during contact interaction is non-linear. Ageneralization

to the case of contact problems is proposed for the theoremof unloading /1/. A

variational principle is obtained in the unloading displacements, and the exist~

ence and uniqueness of the solution of the unloading problem are investigated .

The unloading process is examined in an elastic~plastichalf-space onwhicha

stamp of circular planform acts. The change in the contact area and in the contact

stresses during unloading is studied, and the shape of the residual impressionis

cbtained. The problem is investigatedby using the Galin sclution /2/ of the action

of a circular stamp and a load applied outside the stamp on an elastic half-space.

Numerical methods of solving contact problems with unloading are also examined;

an example is presented for the numerical sclution of the problemof plane defor~

mation in the compression of a strip by two stamps with subsequent unloading.
*prikl.Matem.Mekhan.,49,3,445—452,1985
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1. Formulation of the problem. The unlecading process is investigated in a body
occupying the domain  of three-dimensional spdde bounded by a piecewise-smooth surface T.
The deformations and displacements are considered to be small. We asscciate a monotonically
increasing parameter ¢, f & {0, T], which we call the time, with the deformation process., We
understand u; (z. ?), #;; (z, #),and o4 (2, 1} to be components of the displacement vecter, the strain
and stress tensors at the point z = (), %,,2;) at the time t. The surface I can consist of
three parts: I, Iy, I'.. The displacements U, (z,!) are given on the part I,, and the forces
S;(z,t) on the part Ts. A rigid stamp, whose shape and location at the time t will be
described by the distance @ {7} from the point z to the stamp surface measured along the
normal direction v {z), acts on the body at points of the surface T'e. The contact area
is not given in advance and can change during the deformation. It is assumed that there is
no friction onthe contact area. We letuy, Uy, Oy, O¢ denote the normal and tangential components
of the displacement and stress vectors on T.. Then stamp interaction with the body  is
described by the following conditions /3,4/:

o (7, <0, 6, (x, 1) =0 (1.1}
U (T, L P ), P, 0 >0
oo fr, My @, )~ @ &, N =0, Yze=sT, Vi 0, 7]

Let the functions U, {z.1). S;{z,1), ©(z.1) be such that starting withthe time {* unloading
occurs at all points of the body Q. It is assumed that for f < t* the solution of the
problem is obtained within theframework of a certain definite theory of plasticity, while at
the time ¥ the condition of beginning of the unloading associated with this theory is used,
We introduce increments of the unlcading displacements, deformations, and stresses Au;. Be;.
Ao;; in conformity with the relationships

up {2, 1) = u; {z. %) + Ay, (2. ) (1.2)
£ (I‘ t) = &;; {z. 1%) - .’.’fSu {r. 1)
Oy (.Z'. f) == Oy {r. 3*) - AGU (3‘., 7)

The increments AU, (r.1), AS; {z. 1) AD(r. 1) are defined analogously. We consider the
increments of the stress and strain tensor components during unleoading to be connected by the
linear relationships

Aoy = Al (2) Ay (1.3)

The elastic constants Af}:;; {z) generally depend on the history of the deformation before
the time t*,

Therefore, the problem of determining the state of stress and strain during unloading
involves constructing the functions u,. &;. O;; that satisfy the eguilibrium equations, the
Cauchy relations and the relationships (1.2) ané (1.3), as well as the boundary conditions on
I', and Ts and conditions (1.1} on the contact surface.

2. Theorem on unloading during contact interaction. The solution of boundary
value problems on unloading for [, = (" isbasedonIl'yushin's theorem /1/, according to which
the state of stress and strain is determined by the relations (1.2) at an arbitrary unloading
time, while the increments Au;. Agf;. Ao,; are a solution of a boundary value problem of
elasticity theory for the domain  for displacements AL, {(r.1) given on T, and forces AS;
(z.f} given on Ty. The formal replacement of the guantities in conditions (1.1) by their
increments can obviously result in viclation of these conditions; conseqguently, the theorem
on urnloading cannot be carried over directly to the contact interaction problierm. Such a
deduction is explained by the non-linear nature of the contact problems with indefinite contact
areas even if linear relationships are used tc connect the stress and strain.

Let us generalize the thecrem on unloading to contact problems in such a way as to
conserve relationships (1.2}. To this end, we formulate the following special conditions for
the increments on the surface [

Aoy (2. 1) < —0y (2, 1*), Aog (. 1) = 0 (2.1
Aug (2, 1) < —uy (2. 1%) = @ (. 1)
Aoy (2, 1) + oy (@, A (@ 1) = e 5, 1) - D (2, Dl =0, Yz =T, Vo= 1%, 7]

It can be seen that if Au,, Acg;; satisfy conditions (2.1), then uy, ¢;; defined by (1.2),

will satisfy conditions (1.1). Therefore, we cbtain the following theorem on unloading
during contact interaction.

Theorem 1. To determine the state of stress and strain during unloading for contact
interaction between a body and 2 stamp, it is sufficient to solve the elasticity theory problem
for the domain Q@ with respect to Au;, Agy, Agy; by replacing U, 8, in the boundary conditions
by AU, AS; and taking the conditicns {2.1) on the contact surface. The displacement vector
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and strain and stress tensor components are determined by relationships (1.2).

Corollary. 1f a stamp acting on the boundary of an elastic-plastic half-space is moved
translationally in the normal direction to the boundary, and the contact stresses at the time
of the beginning of the unloading are limited, then the beginning of the unlecading is
accompanied by retardation of the surfaces making contact at points of the contact-area contour.

Let the contact area be reduced during an arbitrarily small time interval At following
* . Then it follows from Thecrem 1 that the increments of the contact stresses Ao, will
equal the contact stresses, with opposite sign, during impression of a stamp with a flat base
{the contact area does not change) or with a concave base {the contact area increases during
the time At) to a depth A® in an elastic half-gpace. In both cases the contact stresses
on the stamp edges will be unbounded for arbitrarily small A®, which results in violation
of the condition o, (s %) — A6, (r, 1) < 0 because of the boundedness of o (z, 1*).

We note that for a sufficiently high degree of initial loading, the residual stresses
that occur can cause secondary plastic deformations, for instance, when a sphere is pressed
intc a half-space /5/. 1In such cases Theorem 1 is applicable only up to the occurrence of
the secondary plastic deformations. Since the corollary of Theorem 1 refers to the time of
the beginning of unloading, the circumstance noted does not restrict the applicability of
this corocllary.

3. Variational formulation of the unloading problem., we use the Sobolev
space H = (W (2)P of the vector functions v (x) =: (1, (z), vy (2), vg (7)) defined@ in the domain €
and square-summable in @ together with their first partial derivatives. We understand the

scalar product in H to be
(v vy = r{u;vz—— u, e dR
Iy
We introduce the set 1% () T H of kinematically possible increments cof the displacements

Ar = H in which we include increments satisfying the boundary conditions on [, and the
kinematic conditicons from {(2.1) on T,

1 () = {Av=H | Ar, (0. ) = AU (0 ), Ye =T,

Ay (g, 1) < —ug dr %) — D (@ ). Yr =T

Wwe denote by Al the strain increments corresponding to Ar according to the Cauchy
As in /4, we cktairn the following integral ineguality by using Gauss’'s theorem:

relationships. e
Ao, (A — 3e,0d0— \ AS, (3, — du)dl — (Ao (Avy— dudT =0, YAarsi*q), Viep*T)
I+ Yo T,
Let  ou* = Oy (2. 1%). 1* = y, (¢, (%), and we trarnsform the integrand in the last term into

AG A = Aby) = Gy (g — ¥ — tiy = ¥} — G* (Aly — Al ) == 0y (Uy = uy) = Oy (Ary — Auy)

It follows from (1.3} that Oy {y — ) 200 Yoy = w*® — Ave, Ay & V¥ (1), Then by using
relationship (1.3}, we of g following variaticnal inequality:
CA% A0, (AL, — 88,)dQ — | A5, (e, — du)dl — (3.1)
D ¥
ot Ay —Augdl 0. Nars Vg, Yee s Ty
rC
If the quadratic form A¥iAe; A6y s pos: then the variational ineguality (3.1) is
equivalent tc the following extremal prchlem /5

i (7 ()= - B(3r. Av)— F(3) — F*(32), i3.2)
ArEVs - !
B (A Avy = { A%0A0 AL, 40
2
Fide) = ASAudl, FH(Ar)== \ o*Au dT

To Te

By using well~known methods /6/, it can be shown that the solution of the variationzl

inegqualities (3.1) (or the extremal problem (3.2)) is a generalized soluticn of the problem

in the original formulaticn.
4. Existence and uniqueness of the solution, Starting from the variational
formulaticn of the problem, we now turn our attention to the fact that the functional J(Av}

is quadratic and can be considered as a functionmal of the total energy for =z certalin linear
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elasticity theory problem with addditional forces - 6,* given on T.. Moreover, the set V* )
is convex and closed for all ¢« [t*, T]. In this case, it is sufficient to use appropriate
general theorems /7/ in investigating the existence and uniqueness of the soluticn. B&s in
/4/, we introduce the auxiliary set V,* (t)which is obtained by shifting all the elements of
the set V* ({) by a fixed element u,< V* (t) satisfying the conditions

Aug; (z, 1)y = AU; (=, t), Va=T,
Aug (2, 1) = —uy (2, t*) + @ (2, 1), Vz & T,

We also introduce the subspace R (T Hof displacements of the body £ as a rigid body.
Then the following assertion holds as a special case of the theorems of the existence and
uniqueness of the solution for linear unilateral problems /7/:

Theorem 2. Let the functions oy* (z), Ai','x;g (x) satisfy the conditions

a* & B (D), Al e L= (Q)
AL Beghe, < abdebey, a >0

and the given functions U;, §;, © by subject to the requirements
Uie B (), SieH™(T,), @=HMNT), Vie[*T)

and for all Are& R [ Vo* () let the inequality

F{Ar) — F* (Ar) <0, Vi 1%, T} (4.1)

hold, where the eguality sign holds only for such Ar& R [} V¢* () for which —Ar& R ) V* (1)
Then a solution Aucz H, ¥t = [i*, T] exists of the problem about the unleoading process during
contact interaction hetween a boedy and a stamp that is unique to within increments of the
displacement Ar &< R such that F (Ar) — F* (A1) =0,

Note that conditions (4.1) are necessary only for I, = (J.

5. On the interaction between a circular stamp and a half-space in the
unloading process. In an elastic-plastic half-space z, {0 let a stamp of circular
planform with flat base of radius ¢ be embedded tc a depth %, and then let the depth of
embedding decrease monctonically., It is assumed there is no friction between the body and
stamp surfaces. The contact pressure distribution p* {z,, %} at the time f* is considered
to be known. Assuming the elastic-plastic deformation prior to f = t* did not change the
elastic constants, the elastic modulus E, and Poisson's ratio v, we determine the size of
the contact area and the contact stress distribution as a function of the stamp position during
unloading. We alsc find the profile of the residual impression,

The problem of impressing a stamp of circular planform into a rigidly plastic half-space
was investigated in /8,9/ using the total plasticity condition. The numerical solution of the
corresponding problem for an elastically ideal plastic medium is proposed in /10/.

We introduce the cylindrical coordinate system(r, ¢, 2} by locating the origin at the
centre of the circle of initial contact. The direction of the 0z axis is in agreement with
the direction of 0z, axis. Let the depth of stamp embedding diminish by AQ® as compared
with @* up to a certain time of unloading. According to Theorer 1, the pressure distribution
p{r) can be represented for the depth of embedding ®* — AQ in the form

p{r)=p*(r—Ap(r). r<e

where Ap (r) = —Ao, (r. ¢, 0) is the normal stress on the surface z =0 corresponding to the
solution of the elasticity-theory problem for a half-space under the following boundary
conditions:

—~A0.. (r, ¢, 0) = Ap (r) < p* (1) (5.1)

Ao, (r, ¢, 0) = Aoy (r 4. 0) =0, —Au; {r, ¢, 0) > AD

Ap () — p* (NllAu. (r, g, 0y + AD] =0, ¥Vr<Ce

Ao, (r, ¢, 0) = Aoy, (r, q. 0) = Ao,y (r, 0, 0) =0, Vr > ¢ (5.2)

Considering that the contact stresses at the beginning and during unleading are limited,
we apply the corollary of Theorem 1 to each time of unloading and obtain that the contact
area during unloading is a circle with monotornically decreasing radius a < ¢. Then conditions
(5.1) can be replaced by conditions in the form of the egualities

Ap(ry=p*{r) a<<r<e (5.3)
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—Au, (r, g, 0) = AD, r e
A0, (r, 9,0) = Aoy (i, @, 0) = 0, r L ¢

Considitions (5.2) and (5.3) correspond to the elasticity~-theory problem about the
action of a circular stamp with a flat base of radius a and axisymmetric load distributed
around the ring a {r < ¢ on the boundary of a half-space. Such a problem is a special case
of the Galin problem /2/ concerning the action of a stamp of circular planform and a normal
load distributed outside the stamp. Using Galin's solutien, we conclude that the guantity
Ap {r) can be represented in the form

Ap (r) = Ap, {r) + Ap, () (5.4)

where Ap, (r) is the pressure under a circular stamp with base of radius a upon impression to
a depth AQ equal to

E 1
= )

() = =y - A0 (5.5)
and Ap, {r) is the additional pressure that occurs under a stamp of radius a due to the action
of the load p*(r) distributed over the ring ¢ {r < ¢ and equal to

[

APz(”)=-—-§\ ) & dpdd {5.6)

S P et — Zprcosd at — 12
e 0

The radius of the contact arez @ is determined from the condition of continuity of the
pressure on the contour of the contact area: p(a) = 0. Determination of the residual impression
reduces to determining the displacements cof points of the circle r < ¢ that occur due to
the acticn of the normal load p* (r) distributed over this circle. Using the Boussinesg
solution, we cobtain the profile of the residual impression

v

B3
\ % dp d¢ 5.7)
(\ Voi—ri—preos® eap (5.7

f—x
wir)j=—0%+ —¢

Qb gy

Therefore, the contact stress distribution during unloading and the shape of the residual
impression for any pressure distribution p* (r) at the time of the beginning of unloading
has been obtained in quadratures. The approach elucidated can also be utilized in the case
of the action of stamps of circular planform with non-planar base.

In the case p* {r) = p*—econst, simple expressions are successfully obtained for the radius
of the contact area, the contact stresses, and the profile of the residual impression. We
note that the pressure distribution p* (r) differs by not more than 17% /8,9/ from the constant
value according to the scheme of a rigidly plastic body.

For p* {r) == const we obtain from (5.6)

<

2p* T ot Qp* o S E g
APN’)ST"T“H/‘,:_#* rull

The condition of continuity of the pressure on the contour of the contact area p¥ — Ap
(¢) = 0 will be satisfied if the radius of the contact area is selected as follows:

{2 E Ry ce

e i e e E— ‘3‘8:

e=1" = o A0 '
Formula (5.8) is meaningful for AD < 2p*c (1 — v} E: for AQ = 2p*c{l — +*)/E total separation

of the stamp from the half-space occurs. By taking the radius of the contact area as given

by (5.8), we obtain the contact pressure distribution at an arbitrary time of the unloading

process

2 p* F o gt
o= | P F g}/ 55 r<a
Q,

roea
The profile of the residual impression is described for p* (r} = const by the function

w(r)=—or — L0

ior
p"cE (-;*)
where E (.. .) is the complete elliptic integral of the second kind.

6. Example of the numerical solution. Using the variational formulation (Ses.d},
2 method was developed for the numerical solution of unloading problems under plain strain
conditicns. The extremal problem (3.3) discretized using the method of finite elements, while
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the solution of the non-linear programming problem that occurs was cobtained by the generalized
method of sequential upper relaxation /11/. A set of programs was developed for investigating
the state of stress and strain during the unloading process for plain strain of a multilayered
acket.

? As an example, we consider the problem of the compression of a strip of rectangular shape
<7, <2 —h<n<hin a section of the plane 0z by two stamps. The stamp surfaces are

described by the following equations (because of symmetry the equations are presented only for
the upper stamp}:

2 - T (21\?

e 1+’E(T) (6.1)

Ty __ Te f21\?

'Tf"“"s‘c(?) (6.2)
2t 4

¥y 5 -

U wr ] 6.3)

where G is the elastic modulus for torsion, and % is the elastic limit for torsion. As a
result of the monotonic growth of the load the stamps come together to the distance 2k — 204,
®* = 1.514/G, and then the stamp is released from the load, which results in unloading in the
strip. It is assumed that the stamps shift transversally in the direction of the 0z axis
under active loading and unloading.

The theory of small elastic-plastic strains was utilized in investigating the active
loading process; a linear hardening scheme with ratioc 0.05 between the elastic and tangential
moduli was used. Poisson's ratio was 0.3. The problem was solved numerically under active
loading by using the method described in /12/.

The unloading problem was solved under the assumption that unloading occurs at all peoints
of the strip and secondary plastic strains do not occur. This assumption was confirmed by the
solution of the problem.

The contact stress distribution during unloading is represented in Fig., 1 for the cases
of compression of stamps with the Egs.(6.1) for the surfaces (continuous curves) or (6.3)
(dashed curves). Curves 1-4 correspond tc the spacing between the stamps 2k — 2@, OG/1h = 1.5
1.3,1.1,09. We note that the contact stress diagrams are similar in a sufficiently large
range of variation of z;, where the maximum value of the contact pressure is a linear function
cf the closure 2i0Q.

03/ Ts
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o ////5
z . = /
2 A / )
; /
. 3 W /
0 AN ‘\ ~1.2 il £z
\Z \\ 7T
——t L4 .:{‘..i\-s.éj_;:f:. —
up &/ h
0
o8 Fig.2
Fig.l

Vertical displacements u,(zp of the surface z, = h are presented in Fig. 2 at the time of
the beginning of unloading {(dashed curves) and in the residual state {continucus curves). The
numbers I, 2, 3 correspond to stamps with the equations (6.1), (6.2), (6.3) for the surfaces.
For comparison, Fig.2 alsoc shows the displacements for the case of compression of a strip
by parallel slabs (curve ¢). We emphasize that the shape of the residual impression differs
significantly from the shape of the stamp. We draw attention to the fact that the maximum depth
of the impression is practically identical in all the cases although the shape of the impressions
differ substantially. This result enables us to conclude that for sufficiently shallow stamps
the maximum depth of the residual impression is independent of the shape of the stamp.
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ON THE STABILITY OF THE LINING OF A HORIZONTAL
OPENING IN A VISCOELASTIC AGEING MEDIUM®

N.KH. ARUTYUNYAN, A.D. DROZDOV and V.BE. KOLMANOVSKII

The stability of a long elastic tube in a viscoelastic medium is studied.
Stability conditicns, formulated ir terms cof the characteristics of the
tube and the medium, are set up. Such probelms are of interest in
studying the stability of undergrcund structures /1-3/. The stability
problem for a tube in the case whern the medium is elastic was studied
in /4/. This paper touches on the investigations in /5,6/.

1. Formulation of the problem. At a depth H from the daylight surface in mountain

rock, let there be a working (opening) of circular cross-section of radius R. The rock is
considered tc be a homogeneous, isotropic, viscoelastic medium filling the half-space. The
working is reinforced, i.e., an elastic cylinder is imbedded which is fixed to the material
of the rock surrcunding the working. The lining is considered to be a homogeneous elastic
medium. Far from the ends of the working, plane strain is realized in the rock and the
lining. According tc /7/, for H/R > 50 the problem of determining the state of stress and
strain of the lining can be simplified and the lining can be considered as an elastic tube
reinforcing a cylindrical hcle in a viscoelastic space which is compressed by the uniform
forces py = yH, p, =v (1 —«~)'vyH far from the hole, where y is the specific gravity, and
v is Poisson's ratio of the rock.

Let the viscoelastic medium occupy all three-dimensional space. Let z;, 1, 7; denote the
coordinates of points of the medium in a Cartesian coordinate system Oz,1,2,. A cylinder
7,? + 2,2 < 1 is cut out of the medium, where the radius can be taken to be egual to unity without loss
of generality. A circular elastic tube whose external radius equals unity is inserted into the hole
being obtained. At the time'? = 0 compressive forces of constant intensity p; along the Oz, axis
and p, along the Oz, axis are applied to the viscoelastic medium at infinity, and a force of intensity
gdirectedperpendiculartothetubeaxisisappliedtotheinnersurfaceofthetube. We introduce
the cylindrical coordinate system Ordz,, whose axis Uxr, coincides with the tube axis, while
the polar angle ¢ is measured from the Oz, axis. The forces applied to the inner surface of
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